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Absbsct We construct a new class of non-topological solitons (NTSS) with scalar self- 
interaction term .+'. Because of the scalar self-interaction, there is a maximum size for 
these objects. There exists a critical value K-;, for the coup2ng. For .>IC,;, there arc no 
stable non-topological solitons. In the thin-walled limit, we show the explicit solutions of 
m with scahr self-interaction and/or gauge interaction. In thecase ofgauged NTS, soliton 
Secomes a superconductor. 

1. Introduction 

Non-topological solitons (NTSS) are stable solutions of the classical field theory [l], 
where the field is confined to a finite region in space and there exists a conserved 
Noether charge. A potential containing only up to quartic terms in a complex scalar 
field does not admit NTS solutions. To get such solutions one has to add new terms to 
the potential. If the complex scalar field is a fundamental field, then in order to have 
a renormalizable theory, one can introduce an adaitional real scalar field CT with, for 
instance, a potential term 

(1) U(C) = tn (2- 0: )* 
a=O corresponds to the false vacuum state, whereas n=u0 is the normal vacuum. 
Instead, if the complex scalar field t$ is purely phenomenological, and therefore renor- 
malizability is no longer required, one can include higher power terms in the potential. 
The simplest self-interaction potential far 4 with a degenerate vacuum is 

where p is a mass parameter, I is a dimensionless parameter, and 141 =O corresponds 
to the normal vacuum. IC the past few years, non-topological solitons have been investi- 
gated widely in the explanation of soliton stars [2], cosmic neutrino balls [3], quark 
nuggets [4], Bose liquid [SI, structure of hadrons [6], and a scenario for producing 
them in a phase transition in the early universe has been considered [7]. The simplest 
example of a NTS is the Q-ball that can appear in a U(1) invariant theory with a 
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complex scalar field that has nonlinear self-interactions. Furthermore, the gauged Q- 
balls have been studied in a local U(1) theory by Lee et a1 [SI, in which they have 
considered the non-renormalizable potential (2). This work provides the possibility for 
understanding how NTSS might arise in realistic gauge theories such as electromagnetism, 
or unified theories. Recently, we have also studied the existence and stability of the 
non-topological fermion string [9] and the classical solutions of the non-topological 
soliton in a renormalizable local U(1) theory [IO]. In this paper, we extend the work 
of Freidberg et a1 [ 111 on non-topological solitons. Specifically, we study the effects of 
adding a quartic scalar self-coupling and of coupling the conserved charge to a gauge 
field. In the thin-walled limit, we show the explicit solutions of the non-topological 
soliton with scalar self-interaction and/or gauge interaction. In the gauged case, the 
soliton becomes a superconductor. For large Q, there exist Qmax and Qmi. in couplings 
less than their critical values. 

It was proposed by Friedberg et a1 [ 111 that the simplest renormalizable field theory 
that admits non-topological solitons is composed of two scalar fields: the real scalar Q 

and the complex scalar 6. Let us consider the following Lagrangian, which is invariant 
under the discrete symmetry c+-c and the global U(1) symmetry #+ei"6: 

(3) 9 = f (i?,,c)* + I D,,#l 2,- V( 6, e) - f F,, ,F"' 

where D,, = a,, - i d , ,  and 

The spherically symmetric NTS solutions for the above Lagrangian were first studied 
by Friedberg et a1 [ l l ]  for the special case K = O  and e=O. In this paper, we are going 
to study the situation for K # O  and/or e#O. Here we are only interested in the case 
when ag>O. Therefore, the discrete symmetry is broken spontaneously in the ground 
state with <e)= Feo. The U(1) symmetry is still intact. As a result, there is a Noether 
current 

J,,=-i(b *D,,#-6D,,r$ *) (5) 
and a corresponding conserved charge 

Q= J d3y JO 

which is the necessary condition for the stability of a non-topological soliton. For large 
Q, it is characterized by an interior false vacuum region with c=O, surrounded by a 
thin domain wall where c rapidly approaches its ground state value c=co. In the 
soliton interior, the potential energy density in Q is balanced by the pressure of the 
massless 4 charges, which are confined by the mass gap p at the domain wall. As a 
simple consequence of the symmetry breaking for the e#O case, the gauge field is 
massive inside and the soliton is a U(1) superconductor. 

2. Qualitative properties of soliton 

We begin by deriving the solitons for the K #O and e#O case as a natural extension of 
the derivation in [ll]. We expect the solitons to be stable as long as their self-energy 
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is much smaller than the other energies. Consider a coherent configuration of q4, cr and 
A, with a given electric charge eQ. The lowest energy solutions are of the spherically 
symmetric form [I, 101 

$~(v, t )  = eio“ 4 ( r ) / J z  

where we assume o>O for definiteness. The lowest energy state, will have no electric 
currents and therefore no magnetic fields. The spatial components of the gauge potential 
are zero as there is no magnetic field. We choose a boundary condition Ao(r)-O as 
w o o .  

The Lagrangian for the configuration described above is 

where prime denotes d/dr. By varying (8) with respect to q4, cr and g at fixed w ,  we 
find the equations of motion: 

- 1 (r4)”=rb 3 +-I P 2  c2$-g2@ 
r 0 0  

(9) 

The energy functional for the solution (7) can be written as 

The soliton charge is 

Q = 41r /r’q4’g dr. 

To gain insight into the NTS solutions for K#O and e#O, we show some qualitative 
properties of the soliton solution. From (10) and (13) we have 

as r+co. Furthermore, q4 approaches zero and a approaches the constant 00 for large 
I, and (9) can be reduced to 

For the approximate equation (15), we have a solution as follows 
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Clearly, a necessary condition for the existence of a solution is o < p 2 .  Additionally, 
for the soliton to be well-behaved at the origin, @', U' and g' should approach zero at 
'least faster than r for r+O. By using the asymptotic behaviour of @, U and g the energy 
functional can be written as 

E = i o Q + 4 ~  r2dr[f#"+fuP2+ V(J U)]. (17) s 
Recall that non-topological solitons are quantum mechanically stable if they are the 

lowest energy configuration of the fixed charge. For the r=O and e=O case. In 1111 it 
was shown that E - $ U ~ I " ~ @ ' ~   for^ large Q so that for Q> Q, the lowest energy state 
is favoured over the free particle one (Efm=pQ). For the K # O  case, we expect that 
the energy will be increased over the K = O  case due to @4 self-interaction becoming 
more important as Q becomes large. Therefore, if aE/aQ>p, we must consider that 
some charge can be put into the interior region of the soliton and some can be put in 
free particles. As discussed above, there exists a Qmi. and a em.,, so that when Q> Qmi. 
the nontopological soliton is quantum mechanically stable, when Q >  em,, the lowest 
energy state of the system is composed of a nontopological soliton with charge Q- 
together with free particles carrying charge Q- Qmmar. In the K = 0 and e =O theory, 
since Qmmar+m, the condition Qmi.< Qma is always satisfied. 

For the e+O case, we have a similar discussion for the em,, case because the energy 
will be increased over the e=O case due to Coulomb repulsion, with Coulomb energy 
becoming more important as Q becomes large. For the K # O  and efO case, we must 
consider both the scalar self-energy and Coulomb energy. In the latter two cases, there 
exists also a maximum charge em., such that Q >  Qmax, a non-topological soliton with 
charge Q- plus e- em. free particles will he the lowest energy state for the system. 

3. Thin-walled soliton with self-interadion ~4~ 

In the K # O  and e=O case, the equations of motion (9)-(11) are reduced to 

1 3 P 2  - (r@)"= K@ +- uZ@- q 2 @  
r cd 

In principle, the NTS solution can be constructed by choosing suitable values for 
the parameters o, K ,  p and I ,  as well as making use of the boundary conditions @ (00) = 
0, o(m)= I and #'(O) =0, o'(0) =O. Then the numerical solution of the non-topological 
soliton can he easily obtained from (18) and (19). In this paper, however, we would 
like to pursue an analytic solution. For this, we select the thin-wall limit and make use 
of the following spherically symmetric test functions: 

(20) 
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There are two length parameters R and L, where R is the radius of the soliton, deter- 
mined from the first zero of f ( r ) ,  and L is the thickness of the soliton wall which 
separates the internal false vacuum from the external real vacuum. When Q is large 
(the thickness of the soliton wall is much less than the soliton radius), the energy 
associated with the wall can be neglected. Therefore, in the thin-wall limit L-90, V ( I )  
can be considered as a step function. The equations of motion are reduced to 

This equation can be solved explicitly by the series in the form 

where 

a1=l a2=3Kag2-4 a3=19~~a:-35~&+ 17 

a 4 = T K  & - 4 8 8 ~ ~ a ~ - ! - 3 6 6 ~ & - ~  .... 619 3 6 (24) 

The convergence radius of the series (23) is dependent on coupling constant K and 
the parameter ao=f(0). Further, when ~&7.168, we find the convergence radius 
>I/@. By using (23) it is now straightforward to solve numerically (22). The results 
for different values of the coupling constant K are given in figure 1. The function f ( r )  
becomes a constant solution for the K =  1 case. By using the RnngeKutta method, the 
'analytic' solutions are corroborated. 

I' 

I 

Figure 1. The solution f ( r )  in units of f(O)/a as a 
n/m for different values of the coupling canstant K. 

function of the radius r in units of 
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In  the weak coupling situation of ~<<1, we have 

f m a 0  sin r O r .  

Substituting (2.5) into the energy functional, we obtain 

where 

For a fixed value of Q, the radius R of the soliton can be determined from the 
minimum of the energy : 

At the radius Rmi,, the energy of the nontopological soliton is 

According to (29) and E < p Q ,  we have 

The value of Q depends on K and p/uo ,  which are modeldependent parameters. It is 
easy to derive that 

There exists a critical value K-~,  for the coupling K :  

When K <  K ~ ~ ~ ,  we have Qmin< anax. In other words, when Q satisfies Qmi.< Q <  Qmnx, 
the non-topological soliton solution of (18) and (19) is stable. When K > K , , ~ ~ ,  stable 
solutions for the non-topological solitons do not exist. 
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4. Gauged thin-walled soliton 

In the K=O,  e#O case, we consider spherically symmetric trial functions (20), (21) and 

9(r) r $ R  

g(r)= / w - -  ezQ r > R .  (34) 

In the thin-wall limit, the equations of motion (9)-(11) are reduced to 

1 
- r (vf)"+f+o (35) 

rg) -eyg=O. (36) 
1 -( - , I  

r 
One can find the power-series solutions for f and 2: 

The recursion formula of the coefficientsf% and ga can be expressed as follows: 

e 2 2 .  '" " ( - l )Y2k.  Lc"-w, . gz(,-") 
gz 'n+2=(2m+1)!  n = O  ' k c 0  e ( 2 k + l ) !  (2n-2k+l)!  (2m-Zn+l)!  

The function f ( r )  may be written as a sum of two terms, the first part independent of 
e, the second part dependent upon e:  

f ( ~ ) = ~ s i n b r - 2 e 2 a 3 b z y 4 / 5 ! +  br 3 (41) 

In the weak coupling situation, we have 

e2Q r q R  ;=I-" w - - .  4nr ." r l R  
(43) 
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Substituting (42)-(44) into the energy functional, the energy of the NTS at the radius 
R,!. is 

According to (45) and E<pQ, we have 

From (46) we have 

There exists a critical value of e above which there is no solution to the equation 
defining and Qmi.. From (47) and (a), it is easy to find that 

We see that the mss can occur when e<e,<,. As a consequence of the symmetry, the 
gauge field is massive inside and soliton is a U(1) superconductor. 

5. General thin-walled soliton 

Now we discuss general case with K # O  and efO. By using trial functions (ZO), (21) 
and (34), the thin-walled solution can be written as follows: 
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where e(x) is a step function, R is the radius of the soliton and 

(53) 
I 
5! 

( 3 ~ ~ -  4 ~ 6 ~  + b4- 2e22b) g 3 = - - a z ( 2 ~ - 2 b Z + d a ' )  .... 

The recursion formula of the coefficientsfK and gk can be expressed as follows: 

In the weak coupling case, using similar process to that above, we obtain the energy 
of the non-topological soliton as 

at the radius &,in, where I is defined in (27). We can define an effective coupling 
constant K = ~ :  

e2 
K < ~ = K + -  

21 (57) 

then (56) is as (29). Therefore, there exists also a critical value in the general case: 

However, the general thin-walled soliton is a superconductor, in contrast with the same 
problem in ~ q 4 ~  theory. 

6. Discussion 

The theoretical studies on boson stars are in a preliminary stage and hopefully future 
observations in particular physics will tell us whether such objects can exist and what 
their relevance for cosmology might be [12]. The simplest model, first discussed by 
Feinblum and MaKinley [13]. Kaup [14], and Ruffini and Bonazzola 1151, consists of 
a massive free complex scalar field. The order of magnitude of the maximal mass is 
Mmax wM$/m,  in which m is mass of the scalar field. In a series of papers Lee and his 
colleagues [I61 extended the results of Ruffini and Bonazzola [15]. In particular, they 
considered excited solutions of the coupled Einstein-Klein-Gordon equations with 
nodes for the radial dependence of the scalar field, which were called soliton stars. The 
critical mass of a soliton star is typically of order Mi/@.  By using the new class of 
non-topological solitons, it is interesting to notice that another class of boson stars can 
be suggested. 

We showed in the above, a new class of non-topological solitons and pointed out 
the existence of a critical value for the coupling constants. When h+e*/U is larger 
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than the critical value, there does not exist any stable non-topological soliton. We make 
three simple comments. (i) In the K+O or e+O limit, from (31) and (32) or (47) and 
(48) we obtain Qmmax-+0o and Qmi.-)12(4nu/3p)4, which agrees with the study of Lee 
and his colleague [Ill. (ii) The Lagrangian (3) has the discrete symmetry u+-u 
spontaneously broken in the ground state with (u)-+?cr,,. If a,>l MeV, this will 
lead to the well-known problem of domain walls, which breaks the discrete symmetry 
explicitly. Since this additional term will be very tiny, it will not affect the study made 
in this paper. (iii) Furthermore if we introduce a realistic model [I71 we arrive at a 
similar conclusion. This separate work will be reported in future. 
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